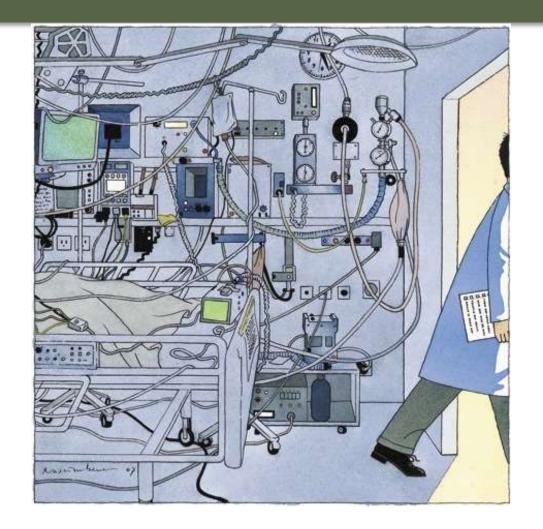


Minimizing Error Maximizing Quality

CHECKLISTS

An effective safety barrier

Session Objectives


- To discuss the role of checklists in healthcare
- To discuss considerations for implementing effective checklists
- 5 W's (why, where, when, who, what)
- To describe the process for creating better/safer workflows with checklists

- 3
- Memory aid for minimum necessary steps
 - Make the minimum set of steps explicit
- Enable process verification
- Enable higher level of performance
 - Couple checklists with performance standards
- Instructional checklists
 - Generally more detail and steps more explicit

- · Complexity.
- Multidisciplinary team.

"To handle complexity, we've split up the tasks among various specialties"

"The biggest source of serious error in this business is a failure of communication"

- 5
- Simple checklists at Johns-Hopkins reduced line infection rates from 11% to 0%
- The same model was deployed statewide in Michigan
- During the initial 15 months in Michigan, it was estimated that the checklist saved 1500 lives and \$175 million

• THE ODDS:

- ~200 steps per patient
- ~400 patients per year
- ~20 repetitive tasks (per fx)
- ~30 fx/patient
- ~0.1% failure rate 1 in a 1000

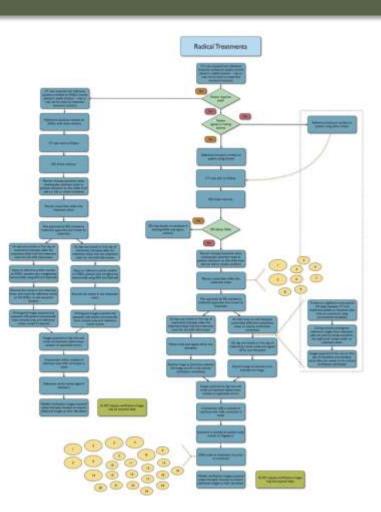
Annual number of missed\failure steps = (200*400+20*30*400)*0.001 = 320 (minor or major)

Table 2. Ranking of QM tools based on the effectiveness	s, in part following the suggestions of ISMP. ¹³
 1 able 2. Ranking of QM tools based on the effectiveness 0. Environment problem correction (Not tool) Sound Control Visual Control Cleaning Neatening Isolation Environmental Design 1. Forcing functions and constraints Interlock Barriers Computerized order entry with feedback 2. Automation and computerization Bar codes Automate monitoring Computerized order entry 3. Protocols, standards, and information Check off forms Establishing Protocol / Clarify Protocol Alarms Labels Signs 	 4. Independent double check systems and other redundancies Redundant measurement Independent review Operational Checks Comparison with standards Increase monitoring Add status check Acceptance test 5. Rules and policies External Audit Internal Audit Priority Establishing / Clarify Communication Line Staffing Better Scheduling Mandatory Pauses Repair PMI (Preventive Maintenance Inspection) Establish and Perform QC and QA (Hardware and Software) 6. Education and Information Training
Reduce similarity	ExperienceInstruction

Checklists – Where, When, Who, What

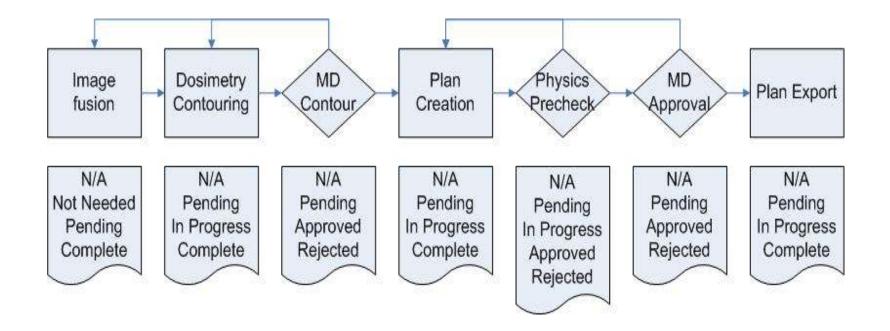
- The tough part is determining Where, When, Who, and What
- Need to separate between
 - Ticklists (Tick fever) BAD
 - Checklists GOOD
- Need a process to make 4 W's effective

"In complex processes, after all, certain steps do not always matter"



Checklists – Where, When, Who, What

- 1. Map your workflows
- 2. Overlay incidents (errors/near misses) and critical steps/items Where, When
- 3. Study and design a checklist Who, What
- 4. Implement
- 5. Monitor and study
- 6. Go back to 2


Checklists – Where, When, Who, What

Possible checklist locations

- Initiation of work (simulation, planning, treatment, etc.)
- Completion of work
- Approval tasks (treatment plans, OR procedures, etc.)
- Instruction checklists

Analyzed Workflow

Failed items

- Items that are identified as failing/not done with checklist
 - Should be captured through ILS (all are near misses)
 - Unique opportunity to identify problem areas
 - Quantitative data on checklist effectiveness

Rejections

- Plans, MUs, port films, QAs, etc.
- Should be captured they indicate failures
- Rejections should not be considered a part of the normal process
- All rejections are near-misses

Cost of rework

16

				Cost of Quality/Cost of
Sigma				Poor Quality as % of Total
Level	DPMO	Error as %	Quality Yield	Operating Cost
2	308,537	30.8%	69.0%	Uncompetitive
3	66,807	6.7%	93.3%	24-40%
4	6,219	0.6%	99.4%	15-20%
5	233	0.0233%	99.98%	5-15%
6	3.4	0.00034%	99.9997%	World Class

Implementation

- Introduce checklists to reduce variability and ensure compliance
- Track items identified by checklists
- Analyze the data
- Determine to maintain, alter, or discontinue existing checklists

Summary

- Checklists have demonstrable efficacy in many fields
 - Should be created with care
- Effective use requires maintenance "Must pause to sharpen the ax"
- Checklists greatly enhance compliance but not necessarily performance – need a safety culture to ensure performance

Acknowledgements:

Varian Medical Systems for their input and collaboration.